Titulo: Funciones Polinomiales.
Ej: 1
x^(3 )+ 2x^(2 )- 5x
=x〖(x〗^(2 )+ 2x-5
x_█(1=0 x^2+ 2x-5=0@)
A= 1, b= 2, c=-5
x=(-b±√(b^2-4ac))/2a
x=(-2±√(2^2-4(1)(-5)))/(2(1))
x=(-2±√(2^2-4(1)(-5)))/(2(1))
x=(-2±√(4+20))/(2(1))
x=(-2±√24)/2
x_1=(-2+√24)/2 ≈0.44
x_2=(-2-√24)/2 ≈ -4.4
Division Sintetica
〖2 x〗^4+ 12x^3+ 6x^2-5x+75 ÷x+5
5 2 12 6 -5 75
-10 -10 20 -75
2 2 -4 15 0
(x+5〖)2x〗^3+ 2x^2- 4x+15
f(x)= x^3+ 7x^2+ 14x+8
Factores 8: ± 1,±2,±4,±8
Factores 1: ± 1
Los posibles ceros de la function son : {± 1,±2,±4,±8}
-4 1 7 14 8
-4 -12 -8
-2 1 3 2 0
-2 -2
1 1 0
X + 1 = o
X= -1
x_█(1= -4@x2= -2@x3= -1)
X= -4 =>x+4
X= -2 =>x+2
X= -1 =>x+1
f(x)=6x^4+ 7x^3- 12x^2- 3x+2
Encuentre un polinomios cuyos ceros son : 2 , -3 , 4
x_(1=) 2=>x-2
x_2= -3=>x+3
x_3=4=>x-4
f(x)= ( x – 2 ) ( x + 3 ) ( x – 4 )
=[x^2+ 3x-2x-6]( x-4 )
[x^2+x -6]( x-4 )
=x^3- 3x^2- 10x+24
f(x) = x^3- 3x^2- 10x+24
Ceros y Multiplicados
Encuentre una function cuyos ceros son : 2 , 3 ( multiplidad 2 )
x_█(1= 2 => x-2@x2=3=> x-3@x3=3=>x-3@x4=1=>x-1)
f(x)=( x-2 )( x-〖3)〗^(2 ) ( x-1)
=( x−2 ) 〖(x〗^2- 2(3x)+ 3^2 ) (x-1)
= (x-2)(x^2-6x+9) (x-1)
= (x^(3 )– 6x^2+ 9x-2x^2+ 12x-18 ( x-1)
=x^4-8x^2+ 21x-18)( x-1)
=x^4-x^3-8x^3+8x^2+21x^2-21x-18x+18
f(x) =x^4-x^3-8x^3+8x^2+21x^2-21x-18x+18
Encuentre un polinomio con ceros: i , -I , 2 y -2
x_█(1= i => x-i@x2=-i=> x+i@x3=2=>x-2@x4=-2=>x+2)
√(-1)=i
i^(2 )= -1
f(x)= ( x – i ) ( x + i) ( x – 2 ) ( x + 2 )
[= ( x – i ) ( x + i) ( x – 2 ) ( x + 2 )]
= (x^2-i^2)(x^2-4)
= [x^2- ( -1 )][x^2-4]
= (x^2+ 1) (x^2-4)
=x^4-4x^2+ x^2-4
f(x)= x^4-4x^2+ x^2-4
factores 4: ± 1 ,±2 ,±4
factores 1: ± 1
Los posibles ceros: {± 1 ,±2 ,±4}
2 1 0 -3 0 -4
2 4 2 4
- 2 1 2 1 2 0
-2 0 -2
1 0 1 0
f(x)= x^2+ 1
0=x^2+ 1
±√(-1 )=√(x^2 )
± i=x
x_1=i
x_(2=-i)